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Abstract A combined hardware and software system for 
the debugging of FPGA designs is designed. It provides a 
powerful logic analyzer implemented as a fully 
parameterized VHDL description. The system can insert 
the analyzer into a user design without manual labor 
required from the user. All processing is done on the 
VHDL-level, facilitating vendor-independent, source-level 
hardware debugging. The system also allows multiple 
independent FPGA-systems to be debugged in a single 
framework. Logic signal analyzers are very essential 
instrument for digital circuit or board debugging. The 
existing market solutions offer several features, but the 
cost of such instruments is very high and most of the time 
we don’t need that much capable instruments. A low cost 
logic signal analyzer is implemented around the Spartan-3 
FPGA. The FPGA being capable of offering high 
frequency data paths in them become suitable for realizing 
high frequency signal capturing logic.  It includes 
development FPGA based logic signal analyzer using 
VHDL. The logic signal analyzer will be capable of 
implementing match conditions, counter based triggering, 
external clocking and internal clocking features. The 
blocks such as registers, counters, comparators, state 
machines will be used in realizing these blocks. The 
captured data will be stored in memory before 
transferring the data to PC. The UART core will be 
developed which, will be used for transferring the data to 
PC. Model sim Xilinx edition (MXE) tools will be used for 
simulation. Xilinx FPGA synthesis tools will be used for 
synthesizing the design for Spartan FPGAs. The developed 
application will be tested on Spartan 3E development 
board. 

 
1. INTRODUCTION 

Debugging of FPGA designs is a difficult task due to 
the ever-increasing complexity of the chips. 
Consequently, silicon and CAD system vendors offer 
debug tools, mostly in the form of embedded logic 
analyzers combined with a software analysis tool. Our 
own research project is on high-performance computing 
(HPC) for graphics and visualization using 
reconfigurable devices. For this purpose we have built a 
mini-cluster of four PCs, each equipped with two FPGA 
boards. Each board contains one Xilinx Virtex-II 
4000FPGA and a local memory of 512MB. The boards 
have a PCI-X-interface and are directly connected with 
each other via an own-developed interconnection 
network. It is obvious that such distributed systems pose 
heightened requirements on a debug tool concerning the 
above criteria.  
Problems can include:  
• A faulty FPGA with direct access to host resources can 
cause the host system to crash, which renders in-system 
debugging impossible. 

• Errors can propagate through the network and lead to 
system failures at different places  
• Reproducing erroneous situations in systems of 
Independent components are a difficult task. 
• Certain prerequisites, such as JTAG-chain throughall 
devices, might be impossible to establish. Even if the 
system works correctly there might be the need to 
examine the internal circuitry very closely: for example 
when the performance is lower than expected, and 
bottlenecks or resource contentions must be eliminated. 
This might require complex communication protocols to 
be monitored and individual data packets to be tracked 
through the entire system. Thus, the ability to insert 
own-designed analyzer functions into both the hardware 
and software might become indispensable for project 
success. As an example, the designer might want to use 
existing external memory as trace memory for long 
recording times. Essentially, this requires the hard- and 
software to be available as source code, or at least with 
proper interfaces for extensions. There are quite a 
number of debug tools on the market. Vendor-specific 
tools include ChipScope from Xilinx, SignalTap from 
Altera, and Reveal from Lattice. Vendor-neutral tools 
include Identify fromSynplicity and FPGAView from 
First Silicon Solutions; the latter, however, is for use 
with an external logic analyzer. Our natural choice 
would of course be ChipScope. This tool offers a host of 
powerful features and integrates well with the 
development environment (ISE). The hardware part 
includes integrated logic analyzer cores (ILAs) grouped 
around an integrated controller core (ICON). The latter 
communicates via the JTAG port of the device under 
test with a PC running the ChipScope analyzer software. 
Multiple FPGAs can be debugged as long as they are in 
single JTAG chain. User reports about ChipScope can 
be found in [5] and [9].The cores are generated by the 
CORE generator tool, presenting the user with dialog 
boxes to enter the various parameters. The cores are 
generated as netlists, which can be inserted into the 
design using Xilinx’s core inserter tool. While it is 
convenient for the user most of the time, this “black 
box”-approach is difficult to adapt to the specific 
requirements of a user design. Complex communication 
protocols might be difficult to be monitored. This 
problem is reflected in the fact that Xilinx offers special 
cores for certain on-chip buses (OPB, PLB), but users of 
other complex buses are basically on their own. As an 
additional problem specific to our project, it appears to 
be impossible to debug our eight distributed FPGA-
accelerators in one single framework. These 
considerations led us to the conclusion that for ultimate 
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project success, we would need design sovereignty over 
the debug tools. There are only few HPC systems on the 
market which employ reconfigurable devices for 
application acceleration. Cray's XD1 system provides 
six Xilinx Vir-tex-4 FPGAs and 12 AMD Opteron 
CPUs per chassis, of which up to 12 can be combined in 
one cabinet [3].CPUs and FPGAs are connected directly 
with each other through an interconnect fabric called 
Rapid Array. However, this system has apparently been 
discontinued, and so only few reports about its usage 
can be found. In [12] we can find that ChipScope is 
used for debugging via special cables; whether this 
applies to multiple FPGAs is not reported. The RASC 
RC100 Blade from SGI provides two Xilinx Virtex-4 
FPGAs, and a globally shared memory of 80MB QDR 
SRAM [10]. The interconnection is provided by the SGI 
NUMAlink technology. For debugging SGI offers an 
extended version of the GNU debugger GDB called 
gdbfpga. It allows the FPGA design to be executed in 
single-step mode, and internal values which have been 
mapped to special debug ports can be read by the 
debugger after each step.In this paper we present our 
own approach to multi-host parallel FPGA debugging: 
the InSight system. InSight is combined hardware and 
software system which is able to debug benchmark and 
control up to eight independent FPGA-systems in a 
single framework. The hardware part is an on-chip logic 
analyzer implemented as a parameterized VHDL 
description. The software part is a graphical analysis 
tool running on a remote PC. All processing and user 
interaction is done on the VHDL level that means, the 
users can select signals to be monitored from their 
VHDL source code, and the InSight system will create a 
combined VHDL description which includes the user 
design and the analyzer functionality. No manual labor 
is required; processing includes passing the signals 
through all entity ports up the hierarchy, inserting all 
modified component declarations and instantiations, as 
well as inserting, wiring and configuring the logic 
analyzer modules. Debugging within a subset of 
multiple instances of the same module is supported, 
even if they have been created in a generate loop. The 
combined VHDL description is then ready for synthesis 
and place & route, and after running the user design on 
the FPGA the user can study the waveforms with the 
original signal names preserved. In the following we 
will explain the hardware design, and the methods and 
principles used for VHDL processing. An example for 
hardware consumption and Performance will also be 
given. 
 

2. LOGIC ANALYZER ARCHITECTURE 
The architecture of the logic analyzer circuitry and the 
host interface unit, further on collectively called 
InSightCore, is shown in Figure 1b. A number of 
independent Logic Analyzer Units (LAUs) is grouped 
around the host interface unit, which has a dedicated 
connection to the analyzer PC running the InSight 
software. In our case, this is a standard RS232 interface. 
The design of a LAU is detailed in Figure 2. Most of the 
circuitry is clocked by the user design clock; we use 
pipelining to achieve high clock rates. On the first stage, 
a collection of match units can be placed. Currently we 

have implemented three kinds of match units: a 
numerical match unit NMU, a Boolean expression unit 
BEU, and a transition detection unit TDU. Their design 
is sketched out in Figure 3.The second stage provides 
trigger level units and a storage qualifier unit. The third 
stage finally contains the trigger position counter and 
the trace memory. Besides that, circuitry to latch a 
global time stamp counters, if existent, at trigger time is 
provided. The signals entering a LAU are all recorded in 
the trace memory; a subset or all of them are also used 
as trigger signals. A numerical match unit (Figure 3a) 
can compare any slice of the input signals to two 
loadable constants A and B using =, > and < operators. 
The result flags are combined in any desired way using 
an 8x1 bit loadable memory. Likewise, Boolean 
expressions of up to 6 variables can be evaluated using a 
64x1 bit memory per Boolean expression unit (Figure 
3b). The same Design principle applies to the transition 
detection units (Figure 3c). The system currently 
supports 8 match units of each kind, for a total of 24 
match units, per LAU.A level unit (Figure 3d) can 
combine the outputs of up to five match units using a 
32!1 bit memory. In case a match has occurred, an event 
counter is decremented. If the value has reached 0, the 
level unit on the next level is enabled, or, if level 0 has 
been satisfied, the trigger position counter is enabled. 
All input signals have been continuously recorded in the 
trace memory; if the trigger position counters expires, 
recording stops, thus implementing variable trigger 
offset. Then the host interface unit is notified. This in 
turn sends the data to the analyzer PC, where the user 
can graphically inspect the data using the analyzer 
functions of the InSight software. All of the above 
memories are controlled by the InSight software, so that 
the exact operation of these units can be changed on the 
fly without affecting the user logic. The presented 
hardware units are very compact and fast, but still allow 
versatile match functions, and complex trigger 
sequences on up to four levels to be used. It should be 
emphasized again, however, that any kind of specialized 
match unit can be implemented if the need arises, as 
opposed to commercially available (closed source) 
tools. As can be seen in Figure 2, the user design signals 
are loaded with just one register at the input of the 
corresponding LAU, thus minimizing the effects on the 
user logic. 
 

3. INTEGRATING THE INSIGHT CORE INTO A 
USER DESIGN 

A debug session typically includes the following steps: 
• selection of the user design signals to be monitored, 
• definition of the trigger conditions and sequences, 
• creation of a combined VHDL description for both the 
user design and the InSight core, ready for synthesis and 
place  route 
• configuration of the FPGAs, 
• setup of all LAUs with the proper parameters. 
Typically a complete VHDL design includes a top level 
module which instantiates several components. These 
might be divided further, resulting in a potentially very 
deep hierarchy of modules. The InSight core is to be 
placed in the top-level module as one additional 
component.Thus, if signals of a module deep down in 
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the hierarchy need to be connected to a LAU, they must 
be propagated up the entire hierarchy through all entity 
ports of the traversed modules. Then, potentially large 
numberof modules have to be modified. Multiple 
instances of a given module to be debugged represent a 
further problem, since in this case several different 
versions must be created. Moreover, many of those 
instantiations are the result of potentially nested 
generate- loops, which must be handled correctly. An 
additional issue is specific to the design environment. 
Timing constraints, e.g. for multi-cycle paths (so called 
FROM-TO-constraints), are specified in a separate 
synthesis constraints file (.xcf-file in the Xilinx 
framework) In a modular design there might be several 
such constraints files, which must be consolidated into 
one single file for the combined design, and all net and 
instance labels must be extended according to their path 
through the hierarchy. 
3.1 The Instantiation Tree 
Starting from the top-level module, a tree structure is 
constructed which includes one node for each component 
instantiation. For this purpose, all design files (VHDL 
modules, VHDL packages, and synthesis constraints files) are 

parsed.. In this way, each instance is represented by its own 
node even if it was replicated in a generate loop. At the same 
time the parsed constraints files are inserted into the tree. For 
every instantiation of an entity having constraints file, the net 
or instance labels along with their constraints are copied into 
the node data. Once the tree is built, the user can select the 
signals to be monitored from each individual instance 
(whether replicated or not) and assign them to one of the logic 
analyzer units. This is done via the GUI of the InSight 
software. Each LAU can only receive signals from a single 
clock domain, and that clock must be connected to its clock 
input. When the user has finished signal selection and 
assignment, the instantiation tree is modified bottom- up.If an 
instance at a leaf node does not have signals to be monitored, 
the process steps to the parent node and examines the other 
children. If there are selected signals, these signals are 
assigned to a special debug bus, such as INS_XX(0) <= 
user_signal_a; INS_XX(4 downto 1) <= user_bus_b; which is 
written into the node data. At the same time, the parent node is 
updated to define ports 0 through 4 of the selected LAU as 
being connected. Let’s assume there are two selected signals 
in the next child, and then its node would be modified as 
follows: 
 

 

 

S.Adilakshmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 3107 - 3111

3109



 
 

INS_XX(5) <= user_signal_c; 
INS_XX(6) <= user_signal_d; 
After all children have been processed, the parent’s own 
selected signals, if any, are processed: 
INS_XX(7) <= user_signal_e; 
INS_XX(11 downto 8) <= user_bus_f; 
The parent’s node would then define INS_XX(11 
downto 0) as being connected. This process is 
recursively repeated for all nodes in the tree. 
 
3.2 Creating a combined VHDL Description 
Once the node data items have been modified, a new 
VHDL description is created. It has the form of one 
single, large VHDL file containing all modules of the 
user design and the InSight Core. The original user 
design is left unchanged. Processing is done again 
bottom-up in the Instantiation Tree. 
If an instance at a leaf node does not have selected 
signals, its VHDL description is appended unmodified 
to the output file. The system keeps track of all modules 
written into the output file so that multiple instances of 
the same module are written only once. If a leaf instance 
has selected signals, its entity name is modified to be 
unique, the assignments in its node data (see above) are 
inserted into its architecture definition and its entity port 
(in the above example) is extended by INS_XX : out 
std_logic_vector(4 downto 0); In this form the VHDL 
description of the leaf instance is appended to the output 
file. Once all child nodes have been visited, the parent 
node is processed. If it has modified children, their 
extended component declarations and module 
instantiations are inserted. The new debug ports at their 
port maps are connected to the debug bus as specified in 
their respective node data. If the parent has selected 
signals itself, the assignments are inserted, e.g., 
INS_XX(7) <= user_signal_e; 

INS_XX(11 downto 8) <= user_bus_f; 
and its entity port is extended by 
INS_XX: out std_logic_vector(11 downto 0); 
In this form its new VHDL description is appended to 
the output file. The whole process is recursively 
repeated for all modules. For the top-level module, 
however, instead of extending the entity port list, the 
debug buses are declared as internal signals. 
Additionally, component declaration and module 
instantiation of the InSight Core must be done. In this 
modified form, the top-level VHDL description is 
appended to the output file. Next, the VHDL-sources of 
the InSight Core are written. They are appended 
unmodified from their original form. All configurations 
of the Logic Analyzer Units is done via a separate 
VHDL package file (see next section).Also during tree 
traversal, a new combined synthesis constraints file is 
created. Whenever the process visits a node with a 
constraints file attached, it appends those constraints to 
the combined constraints file with properly adapted 
label names 
 

4. CONFIGURATION INSIGHT CORE 
During synthesis, the InSight Core has to be configured 
according to the specifications the user has supplied. 
This includes: 
• LAUs may be present or not, 
• match units may be present or not, 
• the width of each match unit, 
• the members of the input bus to which each match unit 
is connected, 
• number of level units, 
• the set of match unit outputs to which each level unit is 
connected. 
Generating VHDL descriptions from scratch for a given 
configuration was found to be too complicated. Instead, 
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the InSight Core was implemented as a fully 
parameterized 
design, which can be copied into the combined 
VHDL file in unmodified form. All configuration 
information is instead written into a VHDL package file 
containing a large number of parameters. This shall be 
explained with the example of the Boolean expression 
unit (BEU) in Figure 3b. Its up to six inputs need to be 
connected to any set of signals of the VDn-bus (cf. 
Figure 2). Assumed the system supports a maximum of 
four LAUs with up to eight BEUs, each with up to six 
inputs, a maximum of 192 inputs must be connected. 
Thus, the package file contains an array of 192 integers, 
defining for each input the element of the corresponding 
VD-bus to which it shall be connected. Within the 
VHDL-module 
of a LAU, the BEUs are instantiated as shown below 
(simplified). In the code snippet below, the 
aforementioned integer array is called 
BEU_INPUT_INDEX and defines the connectivity. 
Further parameters written into the package file are 
MAX_BEU and USE_BEU, which define the LAU 
architecture. This principle is applied in the same way to 
the other match units as well as the level units, and so 
the LAUs can be comprehensively configured 
by the InSight software. 
 

5. SYNTHESIS AND PLACE & ROUTE 
With the generation of the combined VHDL file, the InSight 
package file, and the combined constraints file, the debug 
version of the design is ready for synthesis and place & route. 
As we have outlined, required user intervention in order to get 
from a (modular) VHDL design to the debug version has been 
kept to a minimum, with comprehensive GUI support. In our 
project, we use FPGA designs of fairly high frequencies 
(given the relatively old FPGA chips), ranging from 100MHz 
(PCI-X-interface) to 160MHz (onchip bus). So far, insertion 
of InSight Core did not cause problems for PAR to meet 
timing requirements. Hardware resources consumed by 
the InSight core depend of course on the number of 
LAUs and their configuration. An example is given in 
Table 1. A total of four LAUs have been connected to 
four different parts (clock domains) of our design. Once 
again, maximum clock frequencies of the original 
design have not been affected by the inclusion of the 
InSight Core.In this example, the InSight Core 
consumed 1637 slice flip-flops (out of 46,080, or 3.6%), 
1162 LUTs (2.5%), one Digital Clock Manager (DCM), 
and 7 BlockRAMs (out of 120) for a trace depth of 512. 

Table 1: Hardware Configuration 

 

6. THE INSIGHT SOFTWARE SYSTEM 
The InSight software is a multithreaded application with 
a comprehensive graphical user interface. 
Communication with the FPGAs is handled in separate 
threads to assure responsiveness and stability of the 
system. For a trace memory of 512!72 bits, transmission 
of all debug data from a LAU to the analyzer PC takes 
roughly 2.4s at38.4kbaud. Much design effort was spent 
to provide high-performance graphics output. Since 
trigger events can be widely separated in time on the 
different FPGAs, waveforms tend to be very large along 
the time axis. Likewise,the high number of signals 
extends the height of the display as well. Thus, our 
analyzer PC drives a total of four displays; still smooth 
scrolling of very large bitmaps is possible without 
noticeable flicker. A screenshot of the waveform 
window is shown in Figure 4, displaying a collection of 
signals from two FPGAs. Means for controlling the 
FPGAs from the InSight software have also been 
implemented. All parts of the InSight Core can be reset 
by means of a software command (a working RS232 
interface provided), and the FPGAs can be forced into a 
complete reconfiguration. 
 

7. CONCLUSIONS 
We have presented the InSight system, a powerful tool 
for debugging parallel, independent FPGA-systems. It 
offers comprehensive trigger functions and can process 
elaborate trigger sequences. Its most important feature, 
however, is the autonomous processing of VHDL 
designs without work required from the user. This has 
been achieved by means of an instantiation tree 
structure, which facilitates signal propagation through a 
VHDL design hierarchy, and a fully parameterized 
design of the logic analyzer hardware. 
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